- (3) Kawaguchi, Y.; Kanai, H.; Kajiwara, H.; Aral, Y. J. Chem. Eng. Jpn. 1981, 14, 243,
- (4) Kusik, C. L.; Meissner, H. P. Ind. Eng. Chem. Process Des. Dev. 1973, 12, 112.
- (5) Teruya, K.; Hosaka, S.; Nakano, T.; Nakamori, I. J. Chem. Eng. Jpn. 1976, 9, 1. (6) Sako, T.; Hakuta, T.; Yoshitome, H. *Kagaku Kogaku Ronbunshu* 1979,
- . 304.
- (8)
- S. 504.
 Ewing, V. C. J. Sci. Instrum. 1955, 32, 118.
 Weast, R. C. "Handbook of Chemistry and Physics"; CRC Press: Cleveland, OH, 1977; pp D-159-60.
 Sako, T.; Hakuta, T.; Yoshitome, H. J. Chem. Eng. Jpn. 1984, 17, 004 (9)
- 381.
- (10) Le Fevre, E. J.; Nightingale, M. R.; Rose, J. W. J. Mech. Eng. Sci. 1975, 17, 243.
- Robinson, R. A.; Stokes, R. H. "Electrolyte Solutions"; Butterworths: London, 1959; pp 486.
 Jakil, G.; Van Hook, W. A. *J. Chem. Eng. Data* 1972, *17*, 348.
 Snipes, H. P.; Maniy, C.; Ensor, D. D. *J. Chem. Eng. Data* 1975, *20*,
- 287 (14) Holmes, H. F.; Baes, C. F.; Mesmer, R. E. J. Chem. Thermodyn. 1978. 10. 983.

Received for review April 2, 1984. Revised manuscript received August 27, 1984. Accepted October 1, 1984.

Vapor Pressures of the MgI₂-H₂O-I₂ System

Takeshi Sako,* Toshikatsu Hakuta, and Hiroshi Yoshitome

National Chemical Laboratory for Industry, Yatabe, Ibaraki 305, Japan

Vapor pressures for the MgI₂-H₂O-I₂ system were measured up to about 150 kPa. The mole ratio of H₂O to MgI₂ and that of I₂ to MgI₂ were varied from 10.862 to 42.432 and from 0.01 to 8.0, respectively. An empirical method was suggested for correlating the vapor pressures in the ternary system. The agreement between the experimental and calculated results was very good.

Introduction

The concentrating of aqueous solutions containing I2 and MgI₂ is an important process in the magnesium-iodine cycle for thermochemical hydrogen production (1). In order to design this evaporation process, the vapor pressures of the MgI2-H₂O-I₂ system were measured as the fundamental data.

Experimental Section

Vapor pressure data were obtained by means of the equipment and procedures described previously (2) except for two modifications: (a) the volume of the sample container was changed from 30 to 100 cm³ in order to minimize the change of liquid-phase composition during the evacuation of the air from the system and (b) the liquid-phase composition was determined from the charged weights of the dried pure I2 and MgI2 aqueous solution of known concentration. The change of the composition owing to evacuation was within 0.4% and that owing to partition of I2 and H2O between both phases was within 0.4%. Therefore, the total error of the liquid-phase composition was judged to be within 0.8%.

Results and Discussion

The vapor pressures of the $MgI_2 - n_1H_2O - n_2I_2$ system were measured up to about 150 kPa, where n_1 is the mole ratio of H_2O to MgI_2 and n_2 is that of I_2 to MgI_2 . The experiments were divided into three groups: (a) MgI₂-10.862H₂O- n_2 I₂, (b) MgI2-21.301H2O-n2I2, and (c) MgI2-42.432H2O-n2I2. The experimental results are given in Table I. Figure 1 shows the relationship between p and n_2 at various temperatures, where

Figure 1. p as a function of n_2 for MgI₂- n_1 H₂O- n_2 I₂.

p is the vapor pressure of the MgI₂- n_1 H₂O- n_2 I₂ system smoothed by the Antoine equation: $\log p = A + B/(T + C)$. In this figure the y intercept is the vapor pressue of the $MgI_2 - n_1H_2O$ system (p₁) and can be calculated by the method proposed by the authors (3). Most of the points for each temperature and n₁ lie on a straight line and so p was fitted by the least-squares relation

$$p = p_1 + \alpha n_2 \tag{1}$$

where α is the slope of the straight line. Furthermore, the relationship between α and n_1 is shown in Figure 2 from 343.2 to 393.2 K. The values of α were correlated by using the empirical equation

$$\alpha = \alpha_0 + \alpha_1 n_1^{1/2} + \alpha_2 n_1 \tag{2}$$

The parameters α_0 , α_1 , and α_2 at various temperatures are

Table I. Vapor	Pressures of 1	$MgI_2 - n_1H_2O -$	<i>n</i> ₂ I ₂ Systems	
Т, К	p, kPa	<i>Т</i> , К	p, kPa	
$n_1 = 10.862, n_2 = 0.099$		$n_1 = 21.301, n_2 = 0.986$		
327.0	5.43	322.2	9.53	
343.5	11.74	336.0	17.72	
358.1	22.39	352.3	35.59	
380.3	51 00	360.2	18 69	
201.2	75.97	265 C	50.57	
391.3	10.01	305.0	09.07	
400.6	101.45	370.1	70.70	
408.0	127.59	374.1	81.43	
412.0	144.39	378.5	95.06	
$n_1 = 10$	$0.862, n_2 = 0.500$	$n_1 = 21.$ 1.9	301, n ₂ = 998	
331.3	6.85	329.7	13.69	
347.2	14.30	334.3	25.99	
358.2	22.69	355.9	42.06	
370.5	36.60	365.0	59.17	
382.0	55 53	373.2	80.15	
202.0	Q1 20	280.4	102 75	
401.0	107 45	300.4	102.70	
401.8	107.40	300.4	120.49	
403.9	114.02	392.3	152.06	
408.6	131.97	$n_{\rm c} = 91$	$301 \ n_{2} =$	
$n_{1} = 10$	$862 n_{2} =$	$n_1 = 21.301, n_2 = 9,999$		
5	018	330.2	14 18	
345.6	15.95	344 9	26 42	
259.0	26.05	256 0	40.42	
300.0	20.00	330.0	42.00	
370.0	39.84	307.0	00.02	
382.0	61.00	377.1	93.14	
391.5	83.71	384.1	118.40	
398.7	105.05	389.3	139.90	
406.2	131.75	n = 49	499 m -	
411.1	152.96	$n_1 = 42.432, n_2 = 0.010$		
$n_1 = 10$	$0.862. n_2 =$	327.9	14.77	
7	.978	344.0	29.89	
354.3	23.54	352.9	43 40	
366.2	36.96	371.0	86.42	
974 1	10.00	379.5	116.94	
074.L 001 A	40.20	295 9	149 47	
001.4	00.00	300.0	140.41	
307.4	02.40	305.0	102.00	
396.4	103.36	$n_1 = 42$	$432. n_0 =$	
402.9	125.33		999	
408.8	149.58	394 3	13 18	
n - 91	201 n =	2246	20.65	
$n_1 - 21$	$1.301, n_2 - 1.000$	3041.0 950 5	20.00	
000.0	15.00	300.0	40.00	
333.0	15.33	307.8	78.17	
342.7	23.34	373.2	95.08	
353.1	36.42	378.9	115.58	
359.8	47.16	384.2	137.61	
367.4	62.42		40.0	
374.3	80.23	$n_1 = 42.$	$432, n_2 =$	
381.0	101.13	2.0	000	
385.4	116.66	327.4	15.34	
391.7	143.56	343.8	31.11	
204 0	154 96	358.3	55.97	
004.0	104.00	368.0	79.79	
		377.5	111.95	
		383.4	136 15	

Table II. Parameters in Eq 2

<i>Т</i> , К	α ₀	α_1	α_2
343.2	-2.8021×10^{-2}	1.3306×10^{-1}	2.2126×10^{-3}
353.2	-3.5780×10^{-1}	3.6361×10^{-1}	-2.2576×10^{-2}
363.2	-8.2029×10^{-1}	6.7642×10^{-1}	-5.6586×10^{-2}
373.2	-1.4030	1.0609	-9.7504×10^{-2}
383.2	-2.0623	1.4857	-1.3970×10^{-1}
39 3.2	-2.7118	1.8911	-1.7303×10^{-1}

given in Table II. The mean deviation between the experimental data and the calculated results by eq 1 and 2 was 0.25 kPa and the maximum deviation was 0.66 kPa for the MgI2-21.301H₂O-0.986I₂ system.

To check the applicability of this correlation, the vapor

Figure 2. Relation between α and n_1 for MgI₂- n_1 H₂O- n_2 I₂.

Table III. Comparison between p(exptl) and p(calcd)System

Т, К	p(exptl),ª kPa	p(calcd), kPa	dev, kPa	-
343.2	27.34	27.38	0.04	-
353.2	41.31	41.42	0.11	
363.2	61.00	61.10	0.10	
373.2	88.19	88.08	-0.11	
383.2	125.06	124.36	-0.70	

 $^{a}p(exptl)$ is the vapor pressure smoothed by the Antoine equation.

pressures were measured for the MgI2-28.893H2O-1.024I2 system and compared with the calculated values. The results are presented in Table III, where p(expti) is the vapor pressure smoothed by the Antoine equation. The agreement was very good.

Acknowledgment

We express special appreciation to Professor I. Yamada of Nagoya Institute of Technology for his helpful advice regarding the present study and to Miss Yamabuki for her valuable experimental assistance.

Glossary

.....

- A,B,C constants of the Antoine equation
- mole ratio of H₂O to MgI₂ n 1
- mole ratio of I₂ to MgI₂ n_2
- vapor pressure of MgI2-n1H2O-n2I2 system, kPa р
- vapor pressure of MgI2-n1H2O system, kPa **p**₁
- Τ temperature, K

slope of the straight line expressed by eq 1 α

 $\alpha_0, \alpha_1, \alpha_2$ parameters in eq 2

Registry No. MgI₂, 10377-58-9; I₂, 7553-56-2.

Literature Cited

- Hakuta, T.; Haraya, K.; Sako, T.; Ito, N.; Yoshitome, H.; Todo, N.; Kato, J. *Proc. 3rd World Hydrogen Energy Conf.* **1980**, 311.
 Sako, T.; Hakuta, T.; Yoshitome, H. *J. Chem. Eng. Data*, preceding article in this issue.
- (3) Sako, T.; Haraya, K.; Obata, K.; Hakuta, T. Bull. Soc. Sea Water Sci., Jpn. 1983, 37, 165.

Received for review April 2, 1984. Revised manuscript received August 27, 1984. Accepted October 1, 1984.