(3) Kawaguchi, Y.; Kanal, H.; Kajiwara, H.; Aral, Y. J. Chem. Eng. Jpn. 1981, 14, 243.
(4) Kusk, C. L.; Meissner, H. P. Ind. Eng. Chem. Process Des. Dev. 1973, 12, 112.
(5) Teruya, K.; Hosaka, S.; Nakano, T.; Nakamori, I. J. Chem. Eng. Jpn. 1876, $9,1$.
(6) Sako, T.; Hakuta, T.; Yoshltome, H. Kagaku Kogaku Ronbunshu 1979, 5, 304.
(7) Ewing, V. C. J. Scl. Instrum. 1955, 32, 118.
(8) Weast, R. C. "Handbook of Chemistry and Physics"; CRC Press: Cleveland, $\mathrm{OH}, 1977$; pp D-159-60.
(9) Sako, T.; Hakuta, T.; Yoshitome, H. J. Chem. Eng. Jph. 1984, 17, 381.
(10) Le Fevre, E. J.; Nightingale, M. R.; Rose, J. W. J. Mech. Eng. Sci. 1975, 17, 243.
(11) Robinson, R. A.; Stokes, R. H. "Electrolyte Solutions"; Butterworths: London, 1959; pp 486
(12) Jakll, G.; Van Hook, W. A. J. Chem. Eng. Data 1972, 17, 348.
(13) Snipes, H. P.; Manly, C.; Ensor, D. D. J. Chem. Eng. Data 1975, 20 287.
(14) Holmes, H. F.; Baes, C. F.; Mesmer, R. E. J. Chem. Thermodyn. 1978, 10, 983

Recelved for review April 2, 1984. Revised manuscript recelved August 27, 1984. Accepted October 1, 1984.

Vapor Pressures of the $\mathbf{M g I}_{\mathbf{2}}-\mathbf{H}_{\mathbf{2}} \mathbf{O}-\mathbf{I}_{\mathbf{2}}$ System

Takeshl Sako," Toshlkatsu Hakuta, and Hiroshl Yoshliome
Natlonal Chemical Laboratory for Industry, Yatabe, Ibarakl 305, Japan

Vapor preseures for the $\mathrm{MgI}_{\mathbf{2}}-\mathrm{H}_{2} \mathrm{O}-\mathrm{I}_{\mathbf{2}}$ system were measured up to about 150 kPa . The mole ratio of $\mathrm{H}_{2} \mathrm{O}$ to MgI_{2} and that of I_{2} to MgI_{2} were varied from 10.882 to 42.432 and from 0.01 to 8.0 , respectively. An emplrical method was suggested for correlating the vapor pressures In the ternary system. The agreement between the experimental and calculaied results was very good.

Introduction

The concentrating of aqueous solutlons containing I_{2} and MgI_{2} is an important process in the magneslum-lodine cycle for thermochemical hycrogen production (1). In order to desion this evaporation process, the vapor pressures of the MgI_{2} $\mathrm{H}_{2} \mathrm{O}-\mathrm{I}_{2}$ system were measured as the fundamental data.

Expermental Section

Vapor pressure data were obtained by means of the equipment and procedures described previously (2) except for two modifications: (a) the volume of the sample contalner was changed from 30 to $100 \mathrm{~cm}^{3}$ in order to minimize the change of liquid-phase composition during the evacuation of the air from the systern and (b) the liquid-phase composition was determined from the charged welghts of the drled pure I_{2} and MgI_{2} aqueous solution of known concentration. The change of the composition owing to evacuation was within 0.4% and that owing to partition of I_{2} and $\mathrm{H}_{2} \mathrm{O}$ between both phases was within 0.4%. Therefore, the total error of the liquid-phase composition was judged to be within 0.8%.

Results and Discussion

The vapor pressures of the $\mathrm{MgI}_{2}-\mathrm{n}_{1} \mathrm{H}_{2} \mathrm{O}-\mathrm{n}_{2} \mathrm{I}_{2}$ system were measured up to about 150 kPa , where n_{1} is the mole ratio of $\mathrm{H}_{2} \mathrm{O}$ to MgI_{2} and n_{2} is that of I_{2} to MgI_{2}. The experiments were divided into three groups: (a) $\mathrm{MgI}_{2}-10.862 \mathrm{H}_{2} \mathrm{O}-\mathrm{n}_{2} \mathrm{I}_{2}$, (b) $\mathrm{MgI}_{2}-21.301 \mathrm{H}_{2} \mathrm{O}-\mathrm{n}_{2} \mathrm{I}_{2}$, and (c) $\mathrm{MgI}_{2}-42.432 \mathrm{H}_{2} \mathrm{O}-\mathrm{n}_{2} \mathrm{I}_{2}$. The experimental results are given in Table I. Figure 1 shows the relationship between p and n_{2} at various temperatures, where

Flgure 1. ρ as a function of n_{2} for $\mathrm{MgI}_{2}-n_{1} \mathrm{H}_{2} \mathrm{O}-n_{2} \mathrm{I}_{2}$.
p is the vapor pressure of the $\mathrm{MgI}_{2}-\mathrm{n}_{1} \mathrm{H}_{2} \mathrm{O}-\mathrm{n}_{2} \mathrm{I}_{2}$ system smoothed by the Antoine equation: $\log p=A+B /(T+C)$. In this figure the y intercept is the vapor pressue of the $\mathrm{MgI}_{2}-n_{1} \mathrm{H}_{2} \mathrm{O}$ system (ρ_{1}) and can be calculated by the method proposed by the authors (3). Most of the points for each temperature and n_{1} lle on a straight line and so p was fitted by the least-squares relation

$$
\begin{equation*}
p=p_{1}+\alpha n_{2} \tag{1}
\end{equation*}
$$

where α is the slope of the straight line. Furthermore, the relationship between α and n_{1} is shown in Figure 2 from 343.2 to 393.2 K . The values of α were correlated by using the empirical equation

$$
\begin{equation*}
\alpha=\alpha_{0}+\alpha_{1} n_{1}^{1 / 2}+\alpha_{2} n_{1} \tag{2}
\end{equation*}
$$

The parameters α_{0}, α_{1}, and α_{2} at various temperatures are

Table I. Vapor Pressures of $\mathrm{MgI}_{2}-\mathrm{n}_{1} \mathrm{H}_{2} \mathbf{O}-\mathrm{n}_{2} \mathrm{I}_{\mathbf{2}}$ Systems

T, K	p, kPa	$T, \mathrm{~K}$	p, kPa
$\begin{aligned} & n_{1}=10.862, n_{2}= \\ & 0.099 \end{aligned}$		$\begin{gathered} n_{1}=21.301, n_{2}= \\ 0.986 \end{gathered}$	
327.0	5.43	322.2	9.53
343.5	11.74	336.0	17.72
358.1	22.39	352.3	35.59
380.3	51.99	360.2	48.69
391.3	75.87	365.6	59.57
400.6	101.45	370.1	70.70
408.0	127.59	374.1	81.43
412.0	144.39	378.5	95.06
$\begin{gathered} n_{1}=10.862, n_{2}= \\ 0.500 \end{gathered}$		$\begin{gathered} n_{1}=21.301, n_{2}= \\ 1.998 \end{gathered}$	
331.3	6.85	329.7	13.69
347.2	14.30	334.3	25.99
358.2	22.69	355.9	42.06
370.5	36.60	365.0	59.17
382.0	55.53	373.2	80.15
393.3	81.39	380.4	102.75
401.8	107.45	386.4	125.49
403.9	114.02	392.3	152.06
408.6	131.97	$\begin{gathered} n_{1}=\underset{2.999}{21.301,} n_{2}= \\ = \end{gathered}$	
$\begin{gathered} n_{1}=10.862, n_{2}= \\ 5.018 \end{gathered}$			
		330.2	14.18
345.6	15.25	344.2	26.42
358.6	26.05	356.0	42.88
370.0	39.84	367.5	66.62
382.0	61.00	377.1	93.14
391.5	83.71	384.1	118.40
398.7	105.05	389.3	139.90
406.2	131.75	$\begin{gathered} n_{1}=42.432, n_{2}= \\ 0.010 \end{gathered}$	
411.1	152.96		
$\begin{gathered} n_{1}=10.862, n_{2}= \\ 7.978 \end{gathered}$		327.9	14.77
		344.0	29.89
354.3	23.54	352.9	43.40
366.2	36.96	371.0	86.42
374.1	49.29	379.5	116.34
381.4	63.50	385.8	143.47
389.4	82.46	389.6	162.33
396.4	103.36	$\begin{gathered} n_{1}=42.432, n_{2}= \\ 0.999 \end{gathered}$	
402.9	125.33		
408.8	149.58		
		324.3	13.18
$\begin{gathered} n_{1}=21.301, n_{2}= \\ 0.099 \end{gathered}$		334.6	20.65
		350.5	40.50
333.0	15.33	367.8	78.17
342.7	23.34	373.2	95.08
353.1	36.42	378.9	115.58
359.8	47.16	384.2	137.61
367.4	62.42	$\begin{gathered} n_{1}=42.432, n_{2}= \\ 2.000 \end{gathered}$	
374.3	80.23		
381.0	101.13		
385.4	116.66	327.4	15.34
391.7	143.56	343.8	31.11
394.0	154.96	358.3	55.97
		368.0	79.79 111.95
		377.5 383.4	111.95 136.15

Table II. Parameters in Eq 2

$T, \mathrm{~K}$	α_{0}	α_{1}	α_{2}
343.2	-2.8021×10^{-2}	1.3306×10^{-1}	2.2126×10^{-9}
353.2	-3.5780×10^{-1}	3.6361×10^{-1}	-2.2576×10^{-2}
363.2	-8.2029×10^{-1}	6.7642×10^{-1}	-5.6586×10^{-2}
373.2	-1.4030	1.0609	-9.7504×10^{-2}
383.2	-2.0623	1.4857	-1.3970×10^{-1}
393.2	-2.7118	1.8911	-1.7303×10^{-1}

given in Table II. The mean deviation between the experimental data and the calculated results by eq 1 and 2 was 0.25 kPa and the maximum deviation was 0.66 kPa for the MgI_{2} $21.301 \mathrm{H}_{2} \mathrm{O}-0.986 \mathrm{I}_{2}$ system.

To check the applicability of this correlation, the vapor

Flgure 2. Relation between α and n_{1} for $\mathrm{MgI}_{2}-n_{1} \mathrm{H}_{2} \mathrm{O}-n_{2} \mathrm{I}_{2}$.

Table III. Comparison between p (exptl) and p (calcd) System

$T, \mathrm{~K}$	$p($ exptl $),{ }^{a} \mathrm{kPa}$	p (calcd), kPa	$\operatorname{dev}, \mathrm{kPa}$
343.2	27.34	27.38	0.04
353.2	41.31	41.42	0.11
363.2	61.00	61.10	0.10
373.2	88.19	88.08	-0.11
383.2	125.06	124.36	-0.70

${ }^{a} p$ (exptl) is the vapor pressure smoothed by the Antoine equation.
pressures were measured for the $\mathrm{MgI}_{2}-28.893 \mathrm{H}_{2} \mathrm{O}-1.024 \mathrm{I}_{2}$ system and compared with the calculated values. The results are presented in Table III, where p (exptl) is the vapor pressure smoothed by the Antoine equation. The agreement was very good.

Acknowledgment

We express speclal appreclation to Professor I. Yamada of Nagoya Insttute of Technology for his helpful advice regarding the present study and to Miss Yamabuki for her valuable experimental assistance.

Clossary

A, B, C constants of the Antoine equation
n_{1} mole ratio of $\mathrm{H}_{2} \mathrm{O}$ to MgI_{2}
n_{2} mole ratio of I_{2} to MgI_{2}
p vapor pressure of $\mathrm{MgI}_{2}-n_{1} \mathrm{H}_{2} \mathrm{O}-\mathrm{n}_{2} \mathrm{I}_{2}$ system, kPa
$p_{1} \quad$ vapor pressure of $\mathrm{MgI}_{2}-n, \mathrm{H}_{2} \mathrm{O}$ system, kPa
T temperature, K
$\alpha \quad$ slope of the straight line expressed by eq 1
$\alpha_{0}, \alpha_{1}, \alpha_{2}$ parameters in eq 2
Registry No. MgI_{2}, 10377-58-9; $\mathrm{I}_{2}, 7553-56$-2.

LHerature CHed

(1) Hakuta, T.; Haraya, K.; Sako, T.; Ito, N.; Yoshltome, H.; Todo, N.; Kato, J. Proc. 3rd World Hydrogen Energy Cont. 1980, 311.
(2) Sako, T.; Hakuta, T.; Yoshhome, H. J. Chem. Eng. Data, preceding article in this issue.
(3) Sako, T.; Haraya, K.; Obata, K.; Hakuta, T. Bull. Soc. Sea Water Scl., Jpn. 1983, 37, 165.

Recelved for review April 2, 1984. Revised manuscript recelved August 27, 1984. Accepted October 1, 1984.

